A Remark on Soliton Equation of Mean Curvature Flow

نویسنده

  • LI MA
چکیده

with II(X,Y ) = DXY −∇XY, for tangential vector fields X,Y on Σ. We define the mean curvature vector field (in short, MCV) by H = trΣII. In recent years, many people are interested in studying the evolution of the immersion F : Σ → Mn+k along its Mean Curvature Flow (in short, just say MCF). The MCF is defined as follows. Given an one-parameter family of sub-manifolds Σt = Ft(Σ) with immersions Ft : Σ −→ M . Let H(t) be the MCV of Σt. Then our MCF is the equation/system

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 N ov 2 00 8 A note on Kähler - Ricci soliton

In this note we provide a direct proof of the following: Any compact KRS with positive bisectional curvature is CP. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the solution of the Frankel conjecture: Theorem 1. Every compact complex manifold a...

متن کامل

A note on Kähler-Ricci soliton

In this note we provide a proof of the following: Any compact KRS with positive bisectional curvature is biholomorphic to the complex projective space. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the previous solutions of Frankel conjecture: T...

متن کامل

Constructing Soliton Solutions of Geometric Flows by Separation of Variables

This note surveys and compares results in [12] and [21, 22] on the separation of variables construction for soliton solutions of curvature equations including the Kähler-Ricci flow and the Lagrangian mean curvature flow. In the last section, we propose some new generalizations in the Lagrangian mean curvature flow case.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Mean Curvature Flow in a Ricci Flow Background

Following work of Ecker (Comm Anal Geom 15:1025–1061, 2007), we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-withboundary. We compute its variational properties and its time derivative under Perelman’s modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton’s differential Harnack expression for the mean curvature flow in Euclid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003